Flabelliformides A and B, Two Novel Indole Alkaloids from *Ervatamia* flabelliformis

by Shuang Liang, Hai-Sheng Chen*, Yun-Heng Shen, Li Jin, and Wei-Dong Zhang

College of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China (phone: +86-21-25074439; fax: +86-21-25074439; e-mail: haishengc@hotmail.com)

Flabelliformides A (1) and B (2), containing a novel C_{20} indole core, have been isolated from the stems of *Ervatamia flabelliformis*. The structures of 1 and 2 were elucidated on the basis of spectral analysis and X-ray crystallography.

Introduction. – Ervatamia flabelliformis TSIANG (Apocynaceae) [1] is a common plant cultivated in Yunnan and Guanxi provinces in China, whereas its chemical constituents have not been reported yet. As a part of our continuous research on the antiaddictive compounds from the genus Ervatamia [2–3], we now report the isolation of the two novel C_{20} indole alkaloids flabelliformides A (1) and B (2) from the stems of *E. flabelliformis*, and their structures elucidation by spectroscopic methods and X-ray crystallography.

Results and Discussion. – Flabelliformide A (1) was obtained as colorless optically active needles (MeOH) which exhibited a positive reaction with the *Dragendoff* reagent. The IR spectrum showed an absorption for an amide group (1653 cm⁻¹). The empirical molecular formula $C_{20}H_{22}N_2O_2$ was established by HR-TOF-MS ($[M + Na]^+$ at m/z 345.1569). The ¹H- and ¹³C-NMR spectra (*Table*) and NOESY data were compatible with the structure of a 1*H*-pyrido[3',4':5,6]cycloocta[1,2-*b*]indole derivative for flabelliformide A (1). An X-ray crystal-structure analysis confirmed the planar constitution and the relative configuration of 1 (*Fig.*). Although a compound of structure 1 has been obtained in 1975 by *Knox* and *Slobbe* upon treatment of natural tabaernemontanine (3) with MeONa [4] (*Scheme*), to the best of our knowledge, flabelliformide A (1) is the first indole alkaloid with an 1*H*-pyrido[3',4':5,6]cyclooct[1,2-*b*]indole skeleton isolated from a natural source.

The ¹³C-NMR spectrum of **1** revealed 20 C-resonances, including those of two Me, three CH₂, and nine CH groups, and of six quaternary C-atoms. Among them, four CH groups (δ (C) 127.0, 121.7, 120.9, and 112.0) and four quaternary C-atoms (δ (C) 136.4, 133.7, 127.2, and 120.0) showed the typical pattern of a 2,3-disubstituted indole alkaloid. In the ¹H-NMR spectrum, four aromatic protons at δ (H) 7.71 (d, J = 8.0 Hz, H–C(9)), 7.15 (t, J = 8.0 Hz, H–C(10)), 7.35 (t, J = 8.0 Hz, H–C(11)), and 7.39 (d, J = 8.0 Hz, H–C(12)), together with a signal at δ (H) 9.33 (s, H–N(1)), were in good agreement with the assigned indole moiety¹). The ¹H- and ¹³C-NMR (DEPT) data indicated the presence of a C=O (δ (C) 193.2), an

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

amide (δ (C) 170.4), an MeN (δ (C) 34.6), and a CH=CH group (δ (C) 132.3 and 124.1). The relative configuration of **1** was obtained through an analysis of coupling constants and the NOESY plot. H–C(16) (δ 3.08), H–C(15) (δ 2.22), and H–C(20) (δ 1.99) were determined to be β -, α -, and β -oriented, respectively, based on the NOE correlation H–C(16)/H–C(20), and the coupling constant (J = 13 Hz) between H–C(15) and H–C(16).

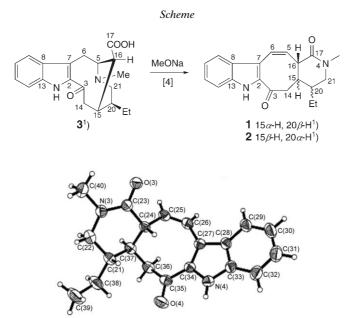


Figure. X-Ray crystal structure of flabelliformide $A(1)^2$). Arbitrary atom numbering.

Flabelliformide B (2) was obtained as a white powder, and showed a positive reaction with the *Dragendoff* reagent. The empirical molecular formula $C_{20}H_{22}N_2O_2$ was established by HR-TOF-MS ($[M+H]^+$ at m/z 323.1760). The same planar structure as that of 1 was deduced from the HMQC, HMBC, and ¹H,¹H-COSY data of 2. The ¹H- and ¹³C-NMR spectra (*Table*) suggested that 2 may be a diastereoisomer of 1. Further data confirmed the (15β , 20β)-configuration¹) of flabelliformide B (2).

The ¹³C-NMR and DEPT spectrum of **2** showed 20 C-resonances, including those of two Me, three CH₂, and nine CH groups, and of six quaternary C-atoms. Among them, four CH groups (δ (C) 126.4, 121.0, 120.8, and 112.0) and four quaternary C-atoms (δ (C) 136.4, 132.5, 126.6, and 118.2) pointed to a 2,3-disubstituted indole unit, which was confirmed by proton resonances at δ (H) 7.41 (d, J = 8.0 Hz, H–C(9)), 7.00 (t, J = 8.0 Hz, H–C(10)), 7.26 (t, J = 8, H–C(11)), 7.32 (d, J = 8, H–C(12)), and 9.92 (s, H–N(1))¹). Also, the ¹H- and ¹³C-NMR (DEPT) data indicated the presence of a C=O (δ (C) 194.8), an amide (δ (C) 171.1), an MeN (δ (C) 34.7), and a CH=CH group (δ (C) 130.8 and 125.9). All the signals in the NMR spectra were very similar to those of **1**, except for the signals of C(14) (δ (C) 41.7 vs. 39.7),

²) Crystal data: C₂₀H₂₂N₂O₂, M_r 322.40, monoclinic system, space group P21, a = 8.222(2), b = 8.964(3), c = 23.961(7) Å, V = 1752.7(9) Å³, Z = 4, d = 1.222mg/m³. Crystal size 0.15 × 0.08 × 0.05 mm. CCDC-639933 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/data_request/cif.

	<u>1</u> ¹)		2 ¹)	
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$
H-N(1)		9.33 (s)		9.92 (s)
C(2)	133.7		132.5	
C(3)	193.2		194.8	
H-C(5)	132.3	6.55 (dd, J = 11.0, 9.0)	130.8	6.08 (dd, J = 11.0, 9.0)
H-C(6)	124.1	7.27 (d, J = 11.0)	125.9	7.16 (dd, J = 11.0, 1.0)
C(7)	120.0		118.2	
C(8)	127.2		126.6	
H-C(9)	121.7	7.71 $(d, J = 8.0)$	121.0	7.41 $(d, J = 8.0)$
H - C(10)	120.9	7.15 $(t, J = 8.0)$	120.8	7.00(t, J = 8.0)
H - C(11)	127.0	7.35(t, J = 8.0)	126.4	7.26 (t, J = 8.0)
H - C(12)	112.0	7.39(d, J = 8.0)	112.0	7.32 (d, J = 8.0)
C(13)	136.4		136.4	
$CH_{2}(14)$	39.7	$3.19 (dd, J = 12.0, 6.0, H_a),$	41.7	2.87 (dd , $J = 12.0, 10.0, H_a$),
		2.73 (dd , $J = 12.0, 3.0, H_{\beta}$)		2.64 $(dd, J = 12.0, 3.0, H_{\beta})$
H - C(15)	49.6	2.22 (<i>m</i>)	49.9	2.69 (<i>m</i>)
H - C(16)	45.9	3.08 (dd, J = 13.0, 9.0)	46.0	3.56 (dd, J = 9.0, 4.5)
C(17)	170.4		171.1	
Me(18)	10.2	0.98(t, J = 7.5)	10.4	0.97 (t, J = 7.5)
$CH_{2}(19)$	23.9	$2.05 (m, H_a), 1.48 (m, H_b)$	23.1	$1.67 (m, H_a), 1.25 (m, H_b)$
H - C(20)	37.9	1.99 (<i>m</i>)	34.7	2.00 (<i>m</i>)
CH ₂ (21)	53.3	$3.35 (dd, J = 12.0, 6.0, H_a),$	54.4	$3.42 (dd, J = 12.5, 5.5, H_a),$
		$3.01 (dd, J = 12.0, 10.5, H_{\beta})$		$3.09 (t, J = 12.0, H_{\beta})$
Me-N(4)	34.6	2.92 (s)	34.7	3.01 (s)

Table 1. ¹³C- and ¹H-NMR Data (CDCl₃) of Flabelliformides A (1) and B (2). δ in ppm, J in Hz.

 $H-C(15)(\delta(H) 2.69 vs. 2.22), H-C(16)(\delta(H) 3.56 vs. 3.08), and C(20)(\delta(C) 34.7 vs. 37.9). H-C(16)(\delta 3.56), H-C(15)(\delta 2.69), and H-C(20)(\delta 2.00) were determined to be <math>\beta$ -, β -, and α -oriented, respectively, based on the NOESY plot. The coupling constant between H-C(15) and H-C(16) was 4.5 Hz, while no NOE correlations H-C(20)/H-C(15) and H-C(16) were observed.

We would like to acknowledge the financial support from the *National Natural Science Foundation of China* (No. 20272081).

Experimental Part

General. Column chromatography (CC): silica gel H (10–40 µm) from Zhifu Huangwu Silica Gel D & R Plant, Yantai, China; Sephadex LH-20 and ODS from Pharmacia and Merck, resp. TLC: plates precoated with silica gel HF_{254} (5–7 µm) from Zhifu Huangwu Silica Gel D & R Plant. Optical rotations: Perkin-Elmer 343 polarimeter; in EtOH. IR Spectra: Bruker Vector-22 spectrometer; KBr pellets; in cm⁻¹. NMR Spectra: Bruker DRX-500 spectrometer; at 500 (¹H) and 125 MHz (¹³C, DEPT); CDCl₃ solns. with SiMe₄ as internal standard; δ in ppm, J in Hz. HR-TOF-MS: ESI mode; Q-Tof-Micro-Mass spectrometer; in m/z (rel. %).

Plant Material. The plant material was collected in October 2002 in Xishuangbanna, Yunnan province, and identified as *Ervatamia flabelliformis* TSIANG by senior engineer *Wang Hong*, Xishuangbanna Tropical Botanic Garden of the Chinese Academy of Science. A voucher specimen has been deposited in the Herbarium of the School of Pharmacy, Second Military Medical University, Shanghai (No. 200210-1).

Extration and Isolation. The air-dried and powdered stems (12 kg) of *E. flabelliformis* were extracted with 95% EtOH under reflux, and the extract was concentrated. The concentrate was dissolved with 2%

HCl soln. and the soln. filtered, and residents (120 g) were given (*Fraction A*). The acidic aq. filtrate was basified with NH₄OH and extracted with CHCl₃. The CHCl₃ layer was dried (Na₂SO₄) and concentrated: 45 g of a crude total alkaloid mixture. *Fr. A* was subjected to CC (silica gel (1 kg), 9×100 cm column, petroleum ether/AcOEt 50:1, 25:1, 10:1, 8:1, 5:1, 3:1, and 1:1, then CHCl₃/MeOH 5:1 and 1:1): *Fr. 1–24. Fr.* 6 (5.5 g) was subjected to CC (silica gel (150 g), 6×80 cm column, petroleum ether/AcOEt 5:1, 3:1, and 1:1): impure **1** and **2**. The latter were further purified by CC (*Sephadex LH-20* (200 ml), CHCl₃/MeOH 1:1): **1** (26 mg) and **2** (24 mg).

Flabelliformide A (=rel-(4R,4aR,13aS)-4-Ethyl-3,4,4a,5,7,13a-hexahydro-2-methyl-1H-pyrido[3',4':5,6]cyclooct[1,2-b]indole-1,6(2H)-dione; 1): Colorless needles (MeOH). M.p. 264–265°. [a]_D²⁵ = -68.8 (c = 0.1, EtOH). IR (KBr): 3423, 3162, 1653. ¹H- and ¹³C-NMR: *Table*. EI-MS: 323 (22, [M + H]⁺), 322 (100, M^+), 294 (20), 265 (14), 251 (25), 183 (14), 180 (22), 154 (16). HR-TOF-MS: 345.1569 ([M + Na]⁺, C₂₀H₂₂N₂NaO⁺₂; calc. 345.1579).

Flabelliformide B (=rel-(4R,4aR,13aR)-4-Ethyl-3,4,4a,5,7,13a-hexahydro-2-methyl-1H-pyrido[3',4':5,6]cyclooct[1,2-b]indole-1,6(2H)-dione; **2**): White powder. M.p. 252–253°. $[a]_{D}^{25} = -23.3$ (c = 0.1, EtOH). IR (KBr): 3440, 2920, 2851, 1731. ¹H- and ¹³C-NMR: *Table*. EI-MS: 322 (58, M^+), 185 (29), 85 (100), 71 (37), 59 (68), 58 (39), 57 (42), 55 (30). HR-TOF-MS: 323.1760 ($[M + H]^+$, $C_{20}H_{23}N_2O_2^+$; calc. 323.1760).

REFERENCES

[1] P. T. Li, Y. Jiang, 'Flora of China', Science Press, Beijing, 1977, Vol. 16, p. 106.

[2] S. Liang, X. G. Luo, H. S. Chen, X. D. Zhang, Chin. Chem. Lett. 2006, 17, 662.

[3] S. Liang, H. S. Chen, J. L. Du, Acad. J. Sec. Mil. Med. Univ. 2006, 27, 892.

[4] J. R. Knox, J. Slobbe, Aust. J. Chem. 1975, 28, 1843.

Received March 29, 2007